Size Dependence of Temperature-Related Optical Properties of PbS and PbS/CdS Core/Shell Quantum Dots
نویسندگان
چکیده
The effect of PbS core size on the temperature-dependent photoluminescence (PL) of PbS/CdS quantum dots (QDs) in the temperature range of 100−300 K was thoroughly investigated and compared with shell-free PbS QDs. The core/shell QDs show significantly smaller PL intensity variation with temperature at a smaller PbS size, while a larger activation energy when the PbS domain size is relatively large, suggesting both different density and different distribution of defects/traps in the PbS and PbS/CdS QDs. The most remarkable difference consists in the PbS size dependence of the energy gap temperature coefficient (dE/ dT). The PbS/CdS QDs show unusual non-monotonic dE/dT variation, resulting in the reversal of the dE/dT difference between the PbS and PbS/ CdS QDs at a larger PbS size. In combination with theoretical calculations, we find that, although lattice dilation and carrier-phonon coupling are generally considered as dominant terms, the unique negative contribution to dE/dT from the core/shell interfacial strain becomes most important in the relatively larger-core PbS@CdS QDs.
منابع مشابه
Investigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot
In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...
متن کاملTowards understanding the unusual photoluminescence intensity variation of ultrasmall colloidal PbS quantum dots with the formation of a thin CdS shell.
In this study, we report anomalous size-dependent photoluminescence (PL) intensity variation of PbS quantum dots (QDs) with the formation of a thin CdS shell via a microwave-assisted cation exchange approach. Thin shell formation has been established as an effective strategy for increasing the PL of QDs. Nonetheless, herein we observed an unusual PL decrease in ultrasmall QDs upon shell formati...
متن کاملBiomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells†
Biomineralization utilizes biological systems to synthesize functional inorganic materials for application in diverse fields. In the current work, we enable biomineralization of quantum confined PbS and PbS–CdS core–shell nanocrystals and demonstrate their application in quantum dot sensitized solar cells (QDSSCs). An engineered strain of Stenotrophomonas maltophilia is utilized to generate a c...
متن کاملSensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion l...
متن کاملInvestigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.
We present for the first time detailed investigation of the charge transfer behavior of PbS@CdS core@shell quantum dots (QDs) showing either a single emission peak from the core or intriguing double emission peaks from the core and shell, respectively. A highly non-concentric core@shell structure model was proposed to explain the origin of double emissions from monodisperse QDs. Their charge tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014